Facebook
Jan.2022 04
浏览量: 1943

玄武岩纤维是什么

介绍
 玄武岩纤维表面较光滑,表面能较低,经过表面改性后,其表面增加纳米SiO2粒子,有效地提高纤维表面粗糙度,增加了微生物与载体间的有效面积;改性后表面有阳离子的存在,载体表面电位升高,载体表面带正电荷,利用静电吸力促进微生物固定,有利于微生物固定化;改性后表面的活性官能团,增加了载体的表面能,所含有羟基、羰基或羧基等,对微生物在载体表面粘附生长有积极的作用。通过玄武岩纤维载体表面改性,使其具有良好的亲水性和微生物负载性能,使之能够负载更多的生物量,且长时间保持较高的微生物活性,从而实现更有效通过生物膜法降解
细节

             玄武岩纤维表面较光滑,表面能较低,经过表面改性后,其表面增加纳米SiO2粒子,有效地提高纤维表面粗糙度,增加了微生物与载体间的有效面积;改性后表面有阳离子的存在,载体表面电位升高,载体表面带正电荷,利用静电吸力促进微生物固定,有利于微生物固定化;改性后表面的活性官能团,增加了载体的表面能,所含有羟基、羰基或羧基等,对微生物在载体表面粘附生长有积极的作用。通过玄武岩纤维载体表面改性,使其具有良好的亲水性和微生物负载性能,使之能够负载更多的生物量,且长时间保持较高的微生物活性,从而实现更有效通过生物膜法降解水体中污染物。
                     

         纤维表面改性技术主要有表面氧化改性技术、化学镀/电镀表面改性技术、等离子体改性技术和涂层改性技术等,其中涂层改性技术应用最为广泛,主要目的为提高其力学能和对环境抗老化性能,以及与其他材料复合性能。在玄武岩纤维(BF)增强聚丙烯(PP)复合材料体系中,引入了聚苯乙烯(PS)与聚丙烯酸羟乙酯(PHEA)的嵌段共聚物大分子偶联剂(PS-b-PHEA),以改善复合材料的界面性能。G.J. Wang[8]利用低温等离子体技术改性玄武岩纤维,提高表面化学稳定性和粗糙度,引入表面活性基团,有利于提高其粘附性能。Denni Kurniawan[9]采用辉光等离子体聚合玄武岩纤维/聚乳酸复合材料,材料力学性能强度和模量分别提高45%和18%。

         将玄武岩纤维作为水质净化用载体材料为新的研究方向,基于微生物载体固定化理论的指导 下,发挥环保新型材料玄武岩纤维的优势和环境友好特性,应用纤维材料表面改性的方法,提高载体表面能、生物亲和性,创制新型环境友好型生物载体,通过应用研究,评价玄武岩纤维载体的性能,是拓展玄武岩纤维材料应用领域的新方向。玄武岩纤维作为水质净化用载体材料还是空白领域,玄武岩纤维已经具备了作为微生物载体的一般性能,但是为了更好提高其表面微生物附着性能,需要对其表面进行改性处理,是将玄武岩纤维类载体得以广泛应用所要亟待解决的问题。
                 

          玄武岩纤维在功能服装领域的应用:玄武岩纤维布具有高强度、永久阻燃性、短期耐温在1000℃以上,可长期在760℃温度环境下使用,是顶替石棉、玻璃纤维布的理想材料。按玄武纤维布的断裂强度高、温高具有永久阻燃性。是Nomex(芳纶1313)、Kevlar(芳纶1414)、Zylon(PBO纤维)、碳纤维等高性能纤维和先进纤维的低价替代品。将玄武纤维布经化学印染整理可以染色和印花。经功能性整理,例如有机氟整理可做成防油据水永久阻燃布。玄武纤维布可制造的服装有:消防员灭火防护服,隔热服,避火服,炉前工防护服,电焊工作服,军用装甲车辆乘员阻燃服。
                 

          玄武岩纤维及其复合材料可以较好地满足国防建设、交通运输、建筑、石油化工、环保、电子、航空、航天等领域结构材料的需求,对国防建设、重大工程和产业结构升级具有重要的推动作用。它既是21世纪符合生态环境要求的绿色材料,又是一个在世界高技术纤维行业中可持续发展的有竞争力的新材料产业。尤其是我国已经拥有自主知识产权的玄武岩纤维制造技术及工艺,并且以"后来居上"的后发展优势达到了国际领先水平,因此,大力发展玄武岩纤维及其复合材料产业无疑具有重要的意义。